DMEA Trusted Foundry Program

NDTA-USTRANSCOM Fall Meeting

Microelectronics Risks Throughout the Defense Supply Chain

October 10, 2017

Catherine Ortiz
on behalf of the Trusted Foundry Program
Today’s Discussion

Microelectronics background

Vulnerabilities: Globalization reduces visibility

Threats: Counterfeits and cyber attacks

DMEA Trusted Foundry Program

An assured supply chain: 78 Trusted Suppliers

Policy: Requirements for Trusted microelectronics

The future for Trust
Microelectronics Background
Early Microelectronics

Nobel Laureate
Jack Kilby at Texas Instruments

Kilby’s original integrated circuit patented in 1959

Department of Defense and NASA were the primary research sponsors and key customers

Design and manufacturing by small, self-contained teams

Performance key focus

Security not a consideration

Fairchild Semiconductor founders, 1960

October 2017

Distribution Statement A. Approved for public release.
Microelectronics Provide Technology Advantage

Apollo Program
First Integrated Circuits
1960s

OH-58D Kiowa Warrior
Very High Speed Integrated Circuits
1980s
Microelectronics Provide Technology Advantage

F-22 Raptor
Digital Electronic Warfare
2000s

Block III Virginia Class Submarines
21st Century Electronics
2010s
Why Worry?

• Over the past decades the United States has built an increasingly sophisticated suite of defense and intelligence capabilities . . . in the process America has become a microelectronics junky

 – The application of technology has yielded incredible improvements in system performance . . . but has simultaneously created a significant vulnerability by basing this performance on components that are susceptible to counterfeiting and tampering

• Microelectronics purchasers encounter threats from both . . .

 the demand domain in which program managers are far-removed from the component purchasing decisions and . . .

 the supply domain in which the global semiconductor industrial capacity is increasingly found outside the U.S.
Vulnerabilities: Globalization Reduces Visibility
Today’s Consumer Electronics Dwarf DoD Needs

Risks:
- Lack of ability to influence technology development
- Loss of access to state-of-the-art technologies

Source: World Semiconductor Trade Statistics (WSTS) and SIA Estimates
U.S. Fabs Are Not Keeping Pace with the Global Market

Risks:
- Fewer trust or trustable fabrication providers
- Lack of assured supply
- Loss of military critical intellectual property
- Lack of chain of custody
- Lack of assured testing
- Reduced investment by domestic suppliers

October 2017

Distribution Statement A. Approved for public release.
Multiple Threats in Semiconductor Production Cycle

Risks:
- Lack of trustable designs
- Lack of supply chain security
- Tampering potential
- Reverse engineering and IP siphoning
- Lack of chain of custody
- Unauthorized copies
- Remarketing and counterfeiting
- Scrap diversion
Total World Capacity (wafers/mo) and Location - 300mm

World’s 300mm Capacity and Location

300 mm 2017 World Operating Capacity = 5,656,920 w/mo

Most of the world’s accessible and leading-edge capacity is in Asia.

DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government Agencies and their contractors. Other requests shall be referred to DMEA.
Defense Supply Chains Are Becoming More Complex

Global nature of supply chains make the chain-of-custody challenging

 Lifecycle shown for a single Joint Strike Fighter component
 - Component changes hands 15 times before final install

Source: IDC Manufacturing Insights & Booz Allen analysis

October 2017
Nominal Defense System Supply Chain

Microelectronics’ position in many DoD systems’ supply chains
Defense systems microelectronics supply chain positions with the Trusted Foundry Program
Threats: Counterfeits and Cyber Attacks
Vulnerabilities from Counterfeit Chips

BusinessWeek (Oct 2, 2008) article entitled “Dangerous Fakes” reports on recycled and counterfeit military chips from China-based suppliers entering DoD supply chain.

Parts Unknown: Examples where counterfeit parts found... DATA: BW Research, DLA

“The risk of compromise in the manufacturing process is very real and is perhaps the least understood cyberthreat . . .
Tampering is almost impossible to detect and even harder to eradicate . . .
Remotely operated ‘kill switches’ and hidden ‘backdoors’ can be written into the computer chips . . . allowing outside actors to manipulate the systems from afar.”
-- Deputy Secretary of Defense William Lynn III

Much of early cybersecurity discussion focused on threats from software and process vulnerabilities . . . the semiconductors may present even greater risks
A German missile system stationed on the Turkish-Syrian border was reportedly hacked by a "foreign source" and carried out "unexplained commands".

The report by German civil service magazine Behörden Spiegel does not give details about what these orders were or when they were carried out, but suggests hackers may have gained access to the missile system through a computer chip which guides the missiles, or through a real-time information exchange which allows the missiles to communicate with their control system.

Ewan Lawson, a cybersecurity expert at defense think tank Royal United Services Institute for Defence and Security Studies, says that hacks of military missile systems may be more common than realized but go unreported for security reasons; and that only nation-states would have the capacity to hack such a system.
Cyber Espionage: Operation Bugdrop

Operation Bugdrop, a new, large-scale cyber-reconnaissance operation targeting a broad range of targets in the Ukraine. It eavesdrops on sensitive conversations by remotely controlling PC microphones – in order to surreptitiously “bug” its targets – and uses Dropbox to store exfiltrated data.

At least 70 victims were targeted by the operation in a range of sectors including critical infrastructure, media, and scientific research.

Most of the targets are located in the Ukraine, but there are also targets in Russia and a smaller number of targets in Saudi Arabia and Austria.

Hackers siphoned 600GB of voice and entered data by taking control of PC microphones.
DMEA Trusted Foundry Program
A Trusted Supply Chain

• Trusted Foundry Program was originally implemented as a long term arrangement with IBM to secure access to leading-edge foundry technology
 – It was soon recognized that offering only IBM’s capabilities left gaps in the trusted microelectronics supply chain
 – Program was broadened to include other microelectronics suppliers to increase competition and ensure the entire supply chain could be trusted
 – In October 2014, IBM announced its plans to transfer its microelectronics fabrication capability to GLOBALFOUNDRIES . . . more on this later . . .

• Trusted supplier accreditation plan expanded the ranks of suppliers capable of providing trusted services for leading-edge, state-of-the-practice and legacy parts by certifying that suppliers meet a comprehensive set of security and operations criteria

Today, 78 suppliers are accredited to provide services ranging from design - - fab - - mask manufacturing - - packaging & testing
The Trusted Foundry Program (TFP) was established in 2003 as a joint effort between DoD and National Security Agency. The TFP continues to evolve to meet today’s defense microelectronics needs.

- Trusted Foundry Access 2 (TFA2) contract awarded by DMEA in April 2016 with overall period of performance through March 2023
 - ASIC and foundry services
 - Pricing based on aggregated demand
 - Commercial, ITAR, and Trusted flows for all commercially available technologies from GFUS2
 - Facilitates advanced access to other leading edge semiconductor technologies (case-by-case)
 - e.g. Fab 8 14LPP GlobalShuttle
 - Enterprise licenses for common design IP

Program provides national security and defense programs with access to semiconductor integrated circuits from secure sources.
The Trusted Foundry Program in OSD

Secretary of Defense

USD (AT&L)

ASD R&E

DASD MIBP

Other ASDs

DPAP

ASD L&M&MR

DTIC

DARPA

DASD Research

DASD Sys. Eng.

DASD EC & P

DASD DT & E

Technologies

STEM

Basic Science

Laboratories

DMEA

Trusted Foundry Program

Distribution Statement A. Approved for public release.
Trusted Defense Systems Strategy

Drivers/Enablers

- National cybersecurity strategies
- Congressional interest
- DoD policy and directives
- Globalization challenges
- Increasing system complexity

Delivering Trusted Systems

Prioritize by mission dependence

Comprehensive Program Protection Planning

Enhanced capability through R&D

Partner with industry

Distribution Statement A. Approved for public release.
An Assured Supply Chain: 78 Trusted Suppliers
78 Trusted Suppliers

Design Aggregation Broker Mask Data Parsing Mask Manufacturing Foundry Post-Processing Packaging/Assembly Test

LP A

ON Semiconductor Pocatello
Plexus Aerospace, Defense and Security Services
The Boeing Company

ON Semiconductor Gresham
Maxtek Components Corp.

TSI Semiconductors America
DMEA
Silicon Turnkey Solutions
Microsemi SOC San Jose
CORWIL Technology
Lockheed Martin SS Site
Atessa, Inc.
Pantronix Corp.
CDSI
e2v, Inc.
Six Sigma
NEO Tech
DPA Components Int'l.
Raytheon Vision Systems
HRL Laboratories
USC-ISI Marina del Rey
USC-ISI MOSIS

Northrop Grumman AS
Boeing Network and Space Systems
Raytheon Space & Airborne Systems
Syphermedia International
Arkham Technology Ltd.
Mercury System Phoenix Microelectronics Center
General Dynamics Mission Systems, Scottsdale
Raytheon Missile Systems
Silanna Semiconductor
L-3 Communications Systems

Integra Technologies
Lockheed Martin Space Systems, Denver Site

National Security Campus – Kansas City

Trusted Semiconductor Solutions Inc.
General Dynamics Mission Systems
Honeywell Aerospace Plymouth
SkyWater Technology Foundry
Rockwell Collins
I3 Electronics, Inc.

As of 6 September 2017

October 2017

Distribution Statement A. Approved for public release.
System Level Trust Concerns

<table>
<thead>
<tr>
<th></th>
<th>ASIC/ASSP</th>
<th>MOTS Microprocessors, DSPs, etc.</th>
<th>FPGAs / Programmable SOCs</th>
<th>Low complexity standard parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tampering</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Counterfeits</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Unauthorized Overproduction</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Supply Chain CPI Confidentiality</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmed CPI Confidentiality</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Foundry Availability & Access</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trust is Multi-Dimensional; Concerns are Component Dependent
Trusted Suppliers Products and Services Offered

- Trusted packaging design, test and assembly
- MEMS
- Trusted product evaluations such as failure analysis, counterfeit design evaluation, environmental testing, trade studies, non-destructive testing . . .
- RAD HARD microcircuit design and fabrication
- **Category II Trusted Standard Parts & FPGAs**
- Trusted microcircuit emulation
- Anti-cloning protection
- Trusted photomask development and parsing
- Military-grade cryptography Type 1 enabled IP cores
- Trusted ASIC and FPGA design and broker services
- Post-processing, such as wafer bumping

78 Accredited Trusted Suppliers are available for a full range of microelectronics design, production, and test for leading-edge, state-of-the-practice, & legacy microelectronics.
Trusted Foundry Program Timeline

2003
DEPSECDEF Initiated Trusted Foundry Program

2004
DoDI 5200.39 System Assurance Strategy

2007
Trusted Accredited Suppliers Program Initiated

2008
DoDI 5200.44 Trusted Systems & Networks

2012
DoDI 4140.67 Counterfeit Prevention Policy

2014 – 2015
IBM Transfers Microelectronics Business to GLOBALFOUNDRIES

2016
NSA's Trusted Access Program Office (TAPO) Transfers to DMEA

2017
DMEA Trusted FPGA Project Initiated

GLOBALFOUNDRIES created U.S. business, GFUS2, to continue operations as Trusted Foundry

Program was broadened to include microelectronics suppliers beyond IBM to increase competition and ensure the entire supply chain could be trusted

2008 – 2013
Original Policy Initiatives

GFUS2 Accredited as Trusted Foundry; most of IBM’s orders are transferred

NSA Created TAPO

GLOBALFOUNDRIES created U.S. business, GFUS2, to continue operations as Trusted Foundry

2017
DMEA Category II Trusted Standard Parts Flow

Trusted FPGAs, microprocessors, and other complex standard products with no CPI

October 2017
Distribution Statement A. Approved for public release.
Long-Term Strategy Time Line

DoD Trusted Foundry Program Consolidation - Defense Microelectronics Activity (DMEA)

Transition

Newly Established Trusted Foundry Contract

Sustained Network of Trusted Certified Suppliers

Trusted and Assured Microelectronics Program:

Alternate Source for Trusted Photomasks

Preparation activities

Capability Development

Deploy new capability

Verification and Validation (V&V) Capabilities and Standards for Trust

Preparation activities

Improve capabilities and capacity, and provide support to program needs, for analysis of microelectronics trust

Identify and develop standards, practices, and partnerships to improve availability of trust from commercial providers

Advanced Technology and Alternative Techniques for Microelectronics Hardware Trust

Preparation activities

Capability development and demonstration

Deploy new capabilities

Supply Chain Risk Countermeasures

Opportunity to Target Surreptitiously
Vulnerability & Threat Analysis

Consequence for Life & Mission

Criticality Analysis

Increased Mitigation Investment

Product Level
Acceptance Test
DLA Qualified Testing Supplier List (QTSL)

Receipt Inspection

Original Component Manufacturer (OCM)
OCM Authorized Distributor
Anonymity Procurement Practice
Commercial Practice

System Level Verification Test

DMEA Accredited Trusted Supplier**
DLA Qualified Manufacturer List (QML)
Qualified Supplier List of Distributors (QSLD)
Anti-Counterfeit Procedure & Inspections**

IUID** Traceability (DLA DNA, etc.)

Organic Design

Organic Foundry
AIA* Destructive Test
AIA* Nondestructive Test

* Advanced Integrity Analysis (AIA)
**DoD Instructions in Place

October 2017

Distribution Statement A. Approved for public release.
Trust Accreditation and DLA Programs

• Defense Logistics Agency programs are focused on quality
 – Qualified Parts List (QPL) – a process that qualifies that products meet a specification
 – Qualified Manufacturers List (QML) – assures that the supplier uses an approved quality system
 – QSLD (Qualified Suppliers List of Distributors) – assures that distributor not only maintains quality system, but also practices to ensure authenticity

• Trusted Supplier accreditation is focused on security
 – Requires DSS SECRET facility clearance and SECRET clearances for all personnel handling product or ICT connected to product’s manufacturing

• DLA programs and Trusted Supplier accreditation both qualify “trustworthy” suppliers, using different criteria . . . but the Trust accreditation is required for some military-specific components
DMEA TFP FY2018 Goals – from President’s Budget Request

• Continue facilitating the availability of Trusted state-of-the-art semiconductor technology to DoD weapon system programs and research organizations through the DMEA Trusted Access Program office contracts.

• Enhance the cadre of trusted suppliers for the critical trusted components and services needed for appropriate defense systems.

• Enhance Trusted Microelectronics products to include newly available leading edge technologies and other key specialty processes required by Department programs.

• Expand a line of trusted catalog components that can be purchased by Defense contractors.

• Continue activities that ensure the DoD has Trusted Access to leading edge semiconductor technologies.

• Continue the development of a capability for the inspection and analysis of application-specific integrated circuits (ASICs) and continuously refine the utilized methods for efficiency, accuracy, and applicability to multiple processes.
Summary

- Access to microelectronics technology is critical for military advantage
- *Shifts towards a global industrial base and commercial products creates access and supply chain security risks*
- Comprehensive cybersecurity must address hardware risks as well as software and process vulnerabilities
- The Trusted Accredited Suppliers provide a deep portfolio of products and services with 78 suppliers accredited
- Broad recognition of the need for new approaches to retain trustable, leading-edge capabilities
Conclusion

It is critically important that the defense programs understand - - and take advantage of - - Trusted resources throughout program lifecycle - - with initial component selection in the design and upgrade phases as well as with refurbishing activities where the threat of counterfeit components is the greatest.
DoD Resources

- DoDI 4140.67 DoD Counterfeit Prevention Policy (April 2013)

- DoDI 5000.02, Change 3, Operation of the Defense Acquisition System (August 2017)

- DoDI 5200.44, Change 2, Protection of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN) (July 2017)

- Policy Memorandum (PM) 15-001 – Joint Federated Assurance Center (JFAC) Charter (February 2015)

- DoDD 5200.47E Anti Tamper (AT) Change 1 (August 2017)

 http://www.acq.osd.mil/se/docs/2017-RIO.pdf

- Defense Acquisition Guidebook (DAG), Chapter 9 Program Protection (February 2017)

- DoD Systems Engineering Initiatives (July 2017)
• DMEA – DOD Program Management & Accreditation
 (916) 568-4057
tapo@dmea.osd.mil

• DBS – Outreach (contractor)
 (202) 683-2021
cjortiz@definedbusiness.com